Zebrafish pituitary gene expression before and after sexual maturation | |
He, Wenxia1,2; Dai, Xiangyan1,2; Chen, Xiaowen1,2; He, Jiangyan1; Yin, Zhan1; Yin, Z (reprint author), Chinese Acad Sci, Inst Hydrobiol, Key Lab Aquat Biodivers & Conservat Chinese Acad, 7 Donghu South Rd, Wuhan 430072, Hubei, Peoples R China. | |
2014-06-01 | |
Source Publication | JOURNAL OF ENDOCRINOLOGY
![]() |
ISSN | 0022-0795 |
Volume | 221Issue:3Pages:429-440 |
Abstract | Sexual maturation and somatic growth cessation are associated with adolescent development, which is precisely controlled by interconnected neuroendocrine regulatory pathways in the endogenous endocrine system. The pituitary gland is one of the key regulators of the endocrine system. By analyzing the RNA sequencing (RNA-seq) transcriptome before and after sexual maturation, in this study, we characterized the global gene expression patterns in zebrafish pituitaries at 45 and 90 days post-fertilization (dpf). A total of 15 043 annotated genes were expressed in the pituitary tissue, 3072 of which were differentially expressed with a greater than or equal to twofold change between pituitaries at 45 and 90 dpf. In the pituitary transcriptome, the most abundant transcript was gh. The expression levels of gh remained high even after sexual maturation at 90 dpf. Among the eight major pituitary hormone genes, lhb was the only gene that exhibited a significant change in its expression levels between 45 and 90 dpf. Significant changes in the pituitary transcripts included genes involved in the regulation of immune responses, bone metabolism, and hormone secretion processes during the juvenile-sexual maturity transition. Real-time quantitative PCR analysis was carried out to verify the RNA-seq transcriptome results and demonstrated that the expression patterns of the eight major pituitary hormone genes did not exhibit a significant gender difference at 90 dpf. For the first time, we report the quantitative global gene expression patterns at the juvenile and sexual maturity stages. These expression patterns may account for the dynamic neuroendocrine regulation observed in body metabolism.; Sexual maturation and somatic growth cessation are associated with adolescent development, which is precisely controlled by interconnected neuroendocrine regulatory pathways in the endogenous endocrine system. The pituitary gland is one of the key regulators of the endocrine system. By analyzing the RNA sequencing (RNA-seq) transcriptome before and after sexual maturation, in this study, we characterized the global gene expression patterns in zebrafish pituitaries at 45 and 90 days post-fertilization (dpf). A total of 15 043 annotated genes were expressed in the pituitary tissue, 3072 of which were differentially expressed with a greater than or equal to twofold change between pituitaries at 45 and 90 dpf. In the pituitary transcriptome, the most abundant transcript was gh. The expression levels of gh remained high even after sexual maturation at 90 dpf. Among the eight major pituitary hormone genes, lhb was the only gene that exhibited a significant change in its expression levels between 45 and 90 dpf. Significant changes in the pituitary transcripts included genes involved in the regulation of immune responses, bone metabolism, and hormone secretion processes during the juvenile-sexual maturity transition. Real-time quantitative PCR analysis was carried out to verify the RNA-seq transcriptome results and demonstrated that the expression patterns of the eight major pituitary hormone genes did not exhibit a significant gender difference at 90 dpf. For the first time, we report the quantitative global gene expression patterns at the juvenile and sexual maturity stages. These expression patterns may account for the dynamic neuroendocrine regulation observed in body metabolism. |
Subtype | Article |
Keyword | Zebrafish Pituitary Rna-seq Transcriptome Endocrine Signal Adolescent Transition |
Department | [He, Wenxia; Dai, Xiangyan; Chen, Xiaowen; He, Jiangyan; Yin, Zhan] Chinese Acad Sci, Inst Hydrobiol, Key Lab Aquat Biodivers & Conservat Chinese Acad, Wuhan 430072, Hubei, Peoples R China; [He, Wenxia; Dai, Xiangyan; Chen, Xiaowen] Univ Chinese Acad Sci, Beijing, Peoples R China |
DOI | 10.1530/JOE-13-0488 |
WOS Headings | Science & Technology ; Life Sciences & Biomedicine |
Funding Organization | National Basic Research Program of China (973 Program) [2010CB126302]; National Natural Science Foundation of China [30925027] ; National Basic Research Program of China (973 Program) [2010CB126302]; National Natural Science Foundation of China [30925027] ; National Basic Research Program of China (973 Program) [2010CB126302]; National Natural Science Foundation of China [30925027] ; National Basic Research Program of China (973 Program) [2010CB126302]; National Natural Science Foundation of China [30925027] |
Indexed By | SCI |
Language | 英语 |
WOS Research Area | Endocrinology & Metabolism |
WOS Subject | Endocrinology & Metabolism |
WOS ID | WOS:000337111400014 |
WOS Keyword | GROWTH-HORMONE ; DANIO-RERIO ; FISH ; NEUROENDOCRINE ; GONADOTROPIN ; SECRETION ; GLAND ; PROTEOME ; BONE ; AGE |
Funding Organization | National Basic Research Program of China (973 Program) [2010CB126302]; National Natural Science Foundation of China [30925027] ; National Basic Research Program of China (973 Program) [2010CB126302]; National Natural Science Foundation of China [30925027] ; National Basic Research Program of China (973 Program) [2010CB126302]; National Natural Science Foundation of China [30925027] ; National Basic Research Program of China (973 Program) [2010CB126302]; National Natural Science Foundation of China [30925027] |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.ihb.ac.cn/handle/342005/20083 |
Collection | 水生生物分子与细胞生物学研究中心_期刊论文 |
Corresponding Author | Yin, Z (reprint author), Chinese Acad Sci, Inst Hydrobiol, Key Lab Aquat Biodivers & Conservat Chinese Acad, 7 Donghu South Rd, Wuhan 430072, Hubei, Peoples R China. |
Affiliation | 1.Chinese Acad Sci, Inst Hydrobiol, Key Lab Aquat Biodivers & Conservat Chinese Acad, Wuhan 430072, Hubei, Peoples R China 2.Univ Chinese Acad Sci, Beijing, Peoples R China |
Recommended Citation GB/T 7714 | He, Wenxia,Dai, Xiangyan,Chen, Xiaowen,et al. Zebrafish pituitary gene expression before and after sexual maturation[J]. JOURNAL OF ENDOCRINOLOGY,2014,221(3):429-440. |
APA | He, Wenxia,Dai, Xiangyan,Chen, Xiaowen,He, Jiangyan,Yin, Zhan,&Yin, Z .(2014).Zebrafish pituitary gene expression before and after sexual maturation.JOURNAL OF ENDOCRINOLOGY,221(3),429-440. |
MLA | He, Wenxia,et al."Zebrafish pituitary gene expression before and after sexual maturation".JOURNAL OF ENDOCRINOLOGY 221.3(2014):429-440. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
Zebrafish pituitary (227KB) | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment