中国科学院水生生物研究所机构知识库
Advanced  
IHB OpenIR  > 中科院水生所知识产出(2009年前)  > 学位论文
题名: 无机碳浓度增加对水华蓝藻的生理生态学效应研究
作者: 康丽娟
答辩日期: 2008-06-14
导师: 刘永定
授予单位: 中国科学院水生生物研究所
授予地点: 水生生物研究所
学位: 博士
关键词: 无机碳 ; 光合活性 ; 水华束丝藻 ; 铜绿微囊藻 ; 内源代谢 ; 补偿生长
其他题名: Ecophysiological Effects of Elevated Dissolved Inorganic Carbon on Bloom-forming Cyanobacteria
摘要: 随着水体富营养化程度的加剧,蓝藻水华暴发的频率和幅度也日益增加。大规模的蓝藻水华降低了水资源的利用效能,造成严重的生态系统失衡及巨大的经济损失,同时蓝藻毒素的产生也给公众健康带来极大的隐患。清楚地认识到这些问题的严重性之后,人们陆续展开了对蓝藻水华的治理工作,焦点大都集中在水体中的氮、磷等常量营养元素,对淡水水体中的无机碳浓度变化在蓝藻水华形成和消退过程中所起的作用的研究较少见。另一方面,大气CO2浓度持续升高,对全球气候变化的影响已引起了广泛的关注。水体是一个非常强大的蓄碳库,大气CO2浓度的增加,无论是正、负效应都将直接影响水生态系统。在此背景下本文系统地研究了淡水水体无机碳浓度增加对水华蓝藻的生态生理学效应。主要结果如下: 1)由于水华束丝藻(Aphanizomenon flos-aquae)具有高效CO2浓缩机制,在200ppm CO2条件下能够较好的生长。现在的大气CO2浓度对其光合作用是饱和的。CO2浓度增加抑制水华束丝藻的CO2浓缩机制,对其生长和光合的促进作用不显著,降低其对氮的利用,提高细胞清除活性氧的能力,提高其抗盐胁迫能力。 2)M. aeruginosa在0.6~12.4mM无机碳浓度条件下均能生长,在实验浓度范围内无机碳浓度与其对M. aeruginosa的影响程度不存在剂量-效应关系,3.5 mM 无机碳对M. aeruginosa生理活性抑制程度最大。 3)无机碳浓度增加在72h内促进铜绿微囊藻(Microcystis aeruginosa)光合活性,随着处理时间的延长,光合产物在细胞内大量积累,破坏铜绿微囊藻光合机构,类囊体数目减少,光合活性降低,出现光合活性下调现象。 4)无机碳浓度增加提高铜绿微囊藻细胞内源代谢,去除高无机碳浓度后铜绿微囊藻表现出一定的补偿生长现象。 5)蛋白核小球藻(Chlorella pyrenoidosa)与铜绿微囊藻对高无机碳的响应方式不同,无机碳浓度增加蛋白核小球藻通过分泌胞外多糖转移光合产物,解除光合产物的反馈抑制,使细胞免受光合作用氧化伤害与环境胁迫。高无机碳浓度下铜绿微囊藻光合下调,光合机构受损伤,从而限制细胞的进一步增殖。暗示无机碳浓度变化有可能是影响水体藻类演替一个因素。 6)高无机碳浓度对水华束丝藻、铜绿微囊藻、蛋白核小球藻、斜生栅藻(Scenedesmus obliquus)和微小多甲藻(Peridinium pusillum)的影响程度存在种间差异性。绿藻CO2浓缩机制不同于蓝藻,蓝藻独特的CO2浓缩机制使其在低无机碳条件下竞争优势显著。在生态调查中蓝藻数量增加。绿藻种类下降也印证了这一结论。水体无机碳浓度增加到一定程度,绿藻耐受高无机碳的能力高于蓝藻,使绿藻重新在群落占据一定的地位。甲藻大多生长缓慢,对无机碳变化不敏感,在竞争中不具有优势。 7)滇池无机碳呈典型的季节和区域分布,无机碳浓度春季和夏初高,夏秋季节低。滇池东北部无机碳浓度及变化幅度均大于西南部。滇池Chl.a平均含量较高,1月份和12月份较低,7~9月较高,东北部Chl.a含量大于西南部。藻类生长会影响水体的无机碳水平,无机碳水平的变化反过来又影响浮游植物群落的动态变化。滇池无机碳浓度变化与Chl.a正相关。
英文摘要: Cyanobacterial blooms have been a worldwide serious environmental problem in water bodies due to the increasing eutrophication for decades. Severe cyanobacterial blooms reduced the availability of water resource, causing serious ecological damage and gigantic economic losing. Continuous efforts for cyanobacterial bloom control have been made in the past in China and other countries of the world. Many factors associated with cyanobacterial bloom occurrence in lakes have been investigated. However, we are still faced with the hard task to control the harmful cyanobacterial blooms in freshwater bodies under the changing environmental conditions in association with global warming. Bicarbonate (HCO3-) is an important external source of inorganic carbon for photosynthesis in cells of planktonic algae. Several reports have indicated that high concentrations of HCO3- inhibit uptake of other nutrient ions and decrease plant growth. It is well known that HCO3- is the prominent dissolved inorganic carbon (DIC) formed during algal blooming. Therefore, it is important to evaluate the effect of HCO3- on the growth and physiological activities of the dominant bloom forming cyanobacterial species such as M. aeruginosa and Aphanizomenon flos-aquae. In this study, ecophysiological effects of DIC on the bloom-forming cyanobacteria were studied. The main results are showing as the followings: 1) Aphanizomenon flos-aquae bloom appeared regularly in January in the recent years in Lake Dianchi. In order to investigate the response of A. flos-aquae to elevated atmospheric CO2 concentration, an experiment was carried out. Effects of elevated atmospheric CO2 on the physiological and biochemical characteristics of A. flos-aquae were determined. Results indicated: ○1A.flos-aquae could growth well at 200 ppmv CO2 with CO2 concentrating mechanism (CCM). Low concentration of CO2 decreased the intensities of photosynthesis and respiration. ○2The growth rate of A. flos-aquaedid not increased when culture medium was bubbled with enriched CO2. ○3Salt stresses caused decrease the growth of A. flos-aquae by disrupting the cell physiological processes, especially the photosynthesis. Malondialdehyde (MDA) content increased following the salinity enhancement. Growth rate, photosynthetic activity and the ratio of photosynthetic pigment chlorophyll a to phycocyanin (Chla/PC) could be enhanced by elevated CO2 concentration. ○4Increased CO2 levels could also play a crucial role in A. flos-aquae’s response to oxidative stress. 2) Under elevated CO2 concentration, the growth and photosynthesis of A. flos-aquae, Scenedesmus obliquus, and Peridinium pusillum were characteristically and obviously different. When CO2 concentration increased, S. obliquu and A. flos-aquae displayed higher growth rates. Elevated CO2 concentration had no significant effect on the growth of P. Pusillum. 3) The influence of bicarbonate (HCO3-) on Microcystis aeruginosa FACHB 905 was assessed. M. aeruginosa could grow well in 0.6~11.9 mM HCO3-. No dose-effect relationship between the content of HCO3- and the growth rate of M. aeruginosa above 3.5 mM HCO3- was found. 4) In order to access the effects of HCO3- on M. aeruginosa, investigations were performed at 2.3 mM and 12.4 mM HCO3-; treatments with sodium chloride (NaCl), variant pH, and K+ were conducted alongside. It was found that upon treatment with elevated HCO3- concentrations of 2.3mM and 12.4mM, cell densities were 13% and 27% higher than the control respectively. In the photosynthetic performance, elevated HCO3- concentration initially stimulated Fv/Fm at the prophase of culture and then subsequently inhibited it. The inhibition of 2.3mM was higher than that of 12.4mM HCO3-. The maximum relative electron transport rate (ETRmax) displayed an inhibition at elevated HCO3- concentrations. DI0/CS decreased at 2.3 mM and increased at 12.4mM. In both treatments, ABS/CS, TR0/CS, ET0/CS, RC/CS0 and RC/CSm decreased by elevated HCO3- concentrations, which indicated damages in the photosynthetic apparats and/or an inactivation in a fraction of the reaction center. This point of results was also proven by ultrastructural observation. Cells in high HCO3- exposure lost their characteristic arrangement of photosynthetic membrane, in comparision with the control and the high salinity treated samples. At 2.3mM concentration of HCO3-, photosynthetic activity decreased due to the damage of photosynthetic apparats. These findings suggested that elevated HCO3- concentration stimulated the growth and photosynthesis of M. aeruginosa in a short time. Exposure to high HCO3- concentrations for a longer period of time will damage photosynthetic apparatus. In addition, results from the ultrastructure observation indicated that elevated HCO3- concentration led to photosynthetic apparati damage. According to the observation of that, the inhibition effect of 2.3mM HCO3- was higher than that of 12.4mM HCO3-. We hypothesized that M. aeruginosa induced a protective mechanism under high concentrations of HCO3-. 5) Effects of HCO3- on the photosynthetic performance of Chlorella pyrenoidosa, a green alga, were investigated. Photosynthetic activity, pigments, MDA and ultrastructure of C. pyrenoidosa were measured in cultures under conditions of two HCO3- concentration, 2.3 mM and 12.4 mM, respectively. At 2.3 mM, photosynthetic activity was stimulated at the prophase of culture and then was inhibited at the anaphase. At 12.4 mM, the same phenomenon was observed, but the inhibition effects were lower than those at 2.3 mM. Ratios of Chlb/Chla increased, but caro/TChl ratios decreased at elevated DIC. The contents of MDA increased at 2.3 mM and decreased at 12.4 mM. In addition, secretion of glycocalix-like layer was remarkably stimulated at elevated DIC. These results showed that elevated DIC promoted the carbon assimilation and stimulated secretion of glycocalix-like layer of C. pyrenoidosa. Carbohydrate could alleviate stresses at elevated DIC. Secretion of glycocalix-like layer could reduce the synthesis of excess photosynthetic products and relieve feedback-inhibition, which will increase the stress tolerance of C. pyenoidosa at elevated DIC. Compared with M. aeruginosa, elevated HCO3- is more detrimental to M. aeruginosa than to C. pyrenoidosa. This evidence supported the hypothesis that HCO3- plays an important role in collapse of the algal blooms and in the species succession of algal bloom. 6) Lake Dianchi is about 300 square kilometers (74,132 acres) in area. It is the largest freshwater lake in Yunnan Province and the so-called sixth largest one in China, famous due to its picturesque scenery and its location on the Yungui Plateau. Cyanobacterial bloom occurred heavily and annually in Lake Dianchi. Foe investigation on the relationship between DIC in situ and the occurrence of cyanobacterial blooms, experiments were conducted in lake Dianchi through January to July 2007. Results showed that the HCO3- and Chl.a concentration all varied with seasonal changes and significant correlations between HCO3- and Chl.a were found (r=0.84, p<0.01). During the period of investigation, the most significant environment change was wind, which resulted in an accumulation of the superficial algael biomass on the leeward area and windward lakeshore. In combination with the historical records, we considered that DIC played a role of regulating the succession of the dominant phytoplanktonic cyanobacterial species.
语种: 中文
内容类型: 学位论文
URI标识: http://ir.ihb.ac.cn/handle/342005/12302
Appears in Collections:中科院水生所知识产出(2009年前)_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
10001_200518011937064康丽娟_paper.pdf(3219KB)----暂不开放-- 联系获取全文

Recommended Citation:
无机碳浓度增加对水华蓝藻的生理生态学效应研究.康丽娟[d].中国科学院水生生物研究所,2008.20-25
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[康丽娟]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[康丽娟]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院水生生物研究所 - Feedback
Powered by CSpace