三个三倍体鲫鱼品系及野鲫 mtDNA 的比较研究

张辉 董新红 叶玉珍 吴清江
(中国科学院水生生物研究所 武汉 430072)

摘要 用 16 种限制性内切酶研究了银鲫 (3N = 156～162)、彭泽鲫 (3N = 162) 和缩骨鲫 (3N = 150) 3 个三倍体鲫鱼品系及野鲫 (2N = 100) 的线粒体 DNA。有 6 种酶在种系间和种系内产生限制性片段长度多态性 (RFLPs)，银鲫共存在 4 种单倍型，彭泽鲫 2 种，野鲫 3 种，缩骨鲫 1 种。彭泽鲫和银鲫拥有相同的常见单倍型，缩骨鲫的单倍型属于野鲫的常见型。根据限制性位点的变异数据，计算了单倍型间的相似性、核苷酸多样性、品系内核苷酸多样性和品系间的遗传距离，确定彭泽鲫属于银鲫的一个地方品系，缩骨鲫属于野鲫的一个地方品系。根据核苷酸的差异，推算出银鲫和野鲫两个亚种的分化大约在 11 万年前完成。

关键词 鲫鱼，线粒体 DNA，种系鉴定
分类号 Q349

鲫鱼在我国分布广泛，种系繁多，并已成为淡水养殖业的主要对象。彭泽鲫和银鲫已在全国范围内推广养殖，并已取得了良好的经济效益。缩骨鲫是分布在湖南省绥宁县的一个特殊的鲫鱼地方种群，因其尾部骨骼萎缩而得名，在绥宁也叫荷苞鲫，在广东省也有养殖，称之为广东鲫。这 3 种鲫鱼均行雄核发育，有关它们的生物学特性和染色体组型分析已有报道[1～3]，它们的起源与进化关系还未见报道。

线粒体 DNA (mtDNA) 是双链环状核外遗传物质，以其分子量小，易于分离、进化快和母系遗传等特点，已被广泛应用于鱼类分类、进化和原种鉴定等方面的研究[4～7]。

本文报道了用限制性内切酶对银鲫、彭泽鲫、缩骨鲫和野鲫 mtDNA 的比较研究，以期探讨它们之间的起源与进化关系。

1 材料和方法
1.1 实验用鱼 银鲫 (Carassius auratus gibelio) 16 尾，取自中科院水生所关桥实验场；彭泽鲫 (C. auratus pengze var.) 20 尾，取自江西省水产所实验场；缩骨鲫 (C. auratus sugu var.) 4 尾，为湖南省绥宁县的野生种群；野鲫 (C. auratus auratus) 17 尾，取自梁子湖的野生种群。
1.2 染色体型鉴定 按常规染色体组型分析方法。
1.3 mtDNA 的制备 以新鲜的成熟卵巢为材料，用张辉等[4]的方法制备 mtDNA。

本文于 1996-10-22 收到，1997-08-07 修回。
本项研究得到了淡水生态和生物技术国家重点实验室开放课题基金和淡水鱼类种质资源和生物技术国家重点实验室开放课题基金的资助。
1.4 限制性内切酶消化和电泳分析 每个个体的 mtDNA 用 16 种的碱基识别位点的限制性内切酶：Bgl I，Bgl II，BamH I，Dra I，EcoR V，Hind III，Kpn I，Mlu I，Pst I，Pvu II，Sac I，Sea I，Sal I，Xho I（购自华美生物工程公司和 Promaga 公司），按厂家推荐的条件进行消化，消化产物用 0.8% 的琼脂糖凝胶进行电泳分析，溴化乙锭染色观察。

\[
\pi = \sum x_i \pi_{ij}
\]

\(x_i \) 是第 i 种单倍型的频率，\(\pi_{ij} \) 是第 i 和第 j 种单倍型间核苷酸差异的比例。

品系间单倍型基因多样性 \(h \):

\[
h = n (1 - \sum x_i^2) / (n - 1)
\]

\(n \) 是样本数，品系间的遗传距离 \(\delta \):

\[
\delta = \pi_{xy} - (\pi_x + \pi_y) / 2
\]

\(\pi_{xy} \) 是品系 X 和 Y 拥有的不同核苷酸的比例，\(\pi_x \) 是品系 X 的核苷酸多样性。

品系间的净核苷酸替代数 \(d_x \):

\[
d_x = d_{xy} - (d_x + d_y) / 2
\]

\(d_{xy} \) 是品系 X 和 Y 中 DNA 单倍型间核苷酸替代的平均数，\(d_x \) 是品系 X 中任意选择的一对组合单倍型间的核苷酸替代的平均数。用 PHYLiP 软件包 KITSCH 程序绘制树状图。

2 实验结果

2.1 染色体分析 常规的染色体组型分析表明：银鲫的染色体为 3N = 156～162，彭泽鲫为 3N = 162，缩骨鲫 3N = 150，野鲫 2N = 100。

2.2 限制性内切酶消化结果 用 15 种限制性内切酶对 4 个鲫鱼品系的 mtDNA 消化，Bgl II，EcoRV 和 Xho I 没有切点，Sac I，Sal I，Mlu I 有一个切点，Sal I 在银鲫中存
在限制性位点多态性，部分个体为2个切点。*Pvu* II、*Eco* R I、*Dra* I、*Xba* I、*Kpn* I 均有2个以上的切点，不存在种系间和种系内的遗传多态性，*Hind* III存在种系间的遗传多态性，无种系内的遗传多态性，它对银鲫和彭泽鲫的 mtDNA 均有5个切点，对野鲫和缩骨鲫为6个切点（图1）。*Bam* H I 在银鲫和彭泽鲫主要是3个切点，而对野鲫和缩骨鲫的

图 3 鲫鱼 mtDNA 经 *Sc* I 消化后的电泳图谱
Figure 3 Electropherogram of mtDNA from *C. auratus* restricted by *Sc* I
注：说明见图1。Note: See Fig.1

图 4 鲫鱼 mtDNA 经 *Bgl* I 消化后的电泳图谱
Figure 4 Electropherogram of mtDNA from *C. auratus* restricted by *Bgl* I
注：说明见图1。Note: See Fig.1

<table>
<thead>
<tr>
<th>酶</th>
<th>银鲫</th>
<th>彭泽鲫</th>
<th>野鲫</th>
<th>缩骨鲫</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hind III</td>
<td>11.8,2.4,1.0,0.6,0.5</td>
<td>11.8,2.4,1.0,0.6,0.5</td>
<td>6.8,5.0,2.4,1.0,0.6,0.5</td>
<td>6.8,5.0,2.4,1.0,0.6,0.5</td>
</tr>
<tr>
<td>Bam H I</td>
<td>6.8,6.1,3.5</td>
<td>6.8,6.1,3.5</td>
<td>13.1,3.5</td>
<td>13.1,3.5</td>
</tr>
<tr>
<td>Bgl I</td>
<td>8.2,5.4,2.7</td>
<td>8.2,5.4,2.7</td>
<td>16.3</td>
<td>16.3</td>
</tr>
<tr>
<td>Dra I</td>
<td>8.2,6.2,1.2,0.6</td>
<td>8.2,6.2,1.2,0.6</td>
<td>8.2,6.2,1.2,0.6</td>
<td>8.2,6.2,1.2,0.6</td>
</tr>
<tr>
<td>Eco R I</td>
<td>7.25,7.25,1.2,0.75</td>
<td>7.25,7.25,1.2,0.75</td>
<td>7.25,7.25,1.2,0.75</td>
<td>7.25,7.25,1.2,0.75</td>
</tr>
<tr>
<td>Kpn I</td>
<td>11.4,5.0</td>
<td>11.4,5.0</td>
<td>11.4,5.0</td>
<td>11.4,5.0</td>
</tr>
<tr>
<td>Pst I</td>
<td>12.0,4.5</td>
<td>12.0,4.5</td>
<td>12.0,4.5</td>
<td>12.0,4.5</td>
</tr>
<tr>
<td>Xba I</td>
<td>11.5,4.7</td>
<td>11.5,4.7</td>
<td>11.5,4.7</td>
<td>11.5,4.7</td>
</tr>
</tbody>
</table>

表 1 4个鲫鱼品系 mtDNA 的限制性片段长度模式

Table 1 restriction fragment pattern from four strains of *Carassius auratus*
mtDNA 为 2 个切点（图 2）。Sca I 对银鲫和银鲫的 mtDNA 有 3 个切点，而在缩骨鲫有 4
个切点，在野鲫有 4 个和 5 个切点两种类型（图 3）。Bgl I 在银鲫和银鲫为 3 个切点，在
野鲫和缩骨鲫为单切点（图 4）。Pst I 存在有个体间多态性。各种酶对 4 个鲫鱼品系
mtDNA 消化产生的限制性片段如表 1 所示。4 个品系鲫鱼 mtDNA 的大小为 16.3kb，在品
系间和品系内没有发现长度差异。由表 1 可以看出，Hind III，Bgl I，Sca I 产生的限制性
片段，可以作为鉴定野鲫和缩骨鲫与银鲫和银鲫的可靠的分子遗传标记。

2.3 4 个鲫鱼品系 mtDNA 的组合单倍型：由表 1 可以看出，有 6 种酶在品系间或品系
内产生限制性片段长度多态性（RFLPs），由此在 4 个鲫鱼品系 mtDNA 中产生了 8 种单倍
型，各单倍型在品系间的分布如表 2 所示。各品系的基因多样性或杂合度为：银鲫 0.4417，

<table>
<thead>
<tr>
<th>单倍型</th>
<th>银鲫</th>
<th>彭泽鲫</th>
<th>野鲫</th>
<th>缩骨鲫</th>
<th>合计</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AAAA</td>
<td>12(0.75)</td>
<td>18(0.9)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AAAA</td>
<td>1(0.1)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AABBA</td>
<td>2(0.125)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BABAA</td>
<td>1(0.0625)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AABBA</td>
<td>1(0.0625)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BBBAAB</td>
<td>6(0.3529)</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BBBAAC</td>
<td>9(0.5294)</td>
<td>4(1.0)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BBACB</td>
<td>2(0.1176)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>合计</td>
<td>Total</td>
<td>16</td>
<td>20</td>
<td>17</td>
<td>4</td>
</tr>
</tbody>
</table>

表 2 4 个鲫鱼品系 mtDNA 单倍型的分布

酶的排列顺序是：Hind III，Bgl I，BamHI，Sal I，Pst I，Sca I，#: 括号内数字为频率
1) The order of the enzymes in the haplotypes is: Hind III, Bgl I, BamHI, Sal I, Pst I, Sca I, #: The
numbers in () are frequency

表 3 4 个种系鲫鱼 mtDNA 单倍型间拥有相同位点的比例（Sij）和核苷酸位点差异数（Vij）

Table 3 The proportion of shared restriction sites and the number of restriction site
between haplotypes in four strains of Carassius auratus

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.9851</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.9697</td>
<td>0.9522</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.9697</td>
<td>0.9552</td>
<td>0.9697</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.9552</td>
<td>0.9706</td>
<td>0.9851</td>
<td>0.9552</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.9091</td>
<td>0.8955</td>
<td>0.9091</td>
<td>0.9394</td>
<td>0.8955</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.9231</td>
<td>0.9091</td>
<td>0.9231</td>
<td>0.9538</td>
<td>0.9091</td>
<td>0.9538</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.8923</td>
<td>0.8788</td>
<td>0.9231</td>
<td>0.9231</td>
<td>0.8788</td>
<td>0.9231</td>
<td>0.9375</td>
<td></td>
</tr>
</tbody>
</table>

注：表中上部数字是 Vij，下部数字是 Sij 值
Note: The figures above the diagonal are Vij, the below are Sij values

表 4 单倍型间核苷酸多样性

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0025</td>
<td>0.0076</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0051</td>
<td>0.0076</td>
<td>0.0051</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0076</td>
<td>0.0025</td>
<td>0.0076</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0159</td>
<td>0.0184</td>
<td>0.0159</td>
<td>0.0104</td>
<td>0.0184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0133</td>
<td>0.0133</td>
<td>0.0079</td>
<td>0.0159</td>
<td>0.0079</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0190</td>
<td>0.0215</td>
<td>0.0133</td>
<td>0.0133</td>
<td>0.0215</td>
<td>0.0133</td>
<td>0.0108</td>
<td></td>
</tr>
</tbody>
</table>

3 讨论

银鲫、彭泽鲫和缩骨鲫均为雌雄核发育繁殖的鲫鱼品系，染色体组型分析表明它们均为三倍体。周嘉、等报道的鲫的染色体为 156，单仕新等报道的鲫的染色体为 152，俞伦等报道的鲫的染色体为 156。我们的实验结果表明，彭泽鲫的染色体为 152，银鲫为 150。有报道银鲫的染色体在 152 之间，不同的母系染色体数不同，所以彭泽鲫的染色体在银鲫的变化范围之内。银鲫与广东鲫的染色体数目存在较大差异值得进一步探讨。据了解，广东鲫是由湖南省引入的（李长春，私人通讯）。

mtDNA 因其母系遗传的特性，是进行种群遗传结构、系统发育和微进化研究及建立遗传标记的一种有效方法。透过以上结果可以看出，尽管银鲫、彭泽鲫和缩骨鲫均为三倍
体，行雌核发育，但 mtDNA 的单倍型间的相似关系及品系间的遗传距离均反映出彭泽鲫
属于银鲫的一个地方种群，缩骨鲫属于野鲫的一个地方品系。因此，彭泽鲫的学名应是
Carassius auratus gibelio pengze var。并且可以通过 mtDNA 的限制性位点变异建立品
系鉴定的分子遗传标记，如 Hind III在银鲫和彭泽鲫均为 5 个切点，在野鲫和缩骨鲫均为 6
个切点；Bgl I 在野鲫和缩骨鲫均为 1 个切点，银鲫和彭泽鲫均为 3 个切点，且不存在品系
内变异。因此这两种酶产生的 RFLP 可以作为这两个鲫鱼品系鉴定的分子遗传标记，这在
其引种、放养和对野生资源的遗传监测和遗传育种方面是非常有用的。

银鲫和野鲫同属于一个物种 C. auratus，经遗传变异分化形成不同亚种，图 5 反映出
了两个亚种不同单倍型间的系统发育关系，单倍型 8 比较古老，在所有单倍型中其特殊之
处在于 Pst I 仅有一个切点，由于碱基替代出现 Pst I 的常见谱型 2 切点。单倍型 4 属于银
鲫，但从聚类图可见其与野鲫的单倍型关系较近，这是因为其 Hind III 谱型是野鲫的常见
型，是银鲫个体中的唯一例外，单倍型 3, 4, 5 的 BamHI 谱型是野鲫的常见型，这在聚类图
中得到了很好的体现。由于所有个体的 mtDNA 分子大小无差异，所以，其序列变异属于
碱基替代的结果。一般认为，在进化过程中碱基的替代率是恒定的，由此我们可以推算出
野鲫和银鲫这两个亚种的分化年代大约在 11 万年前完成。

mtDNA 因其母系遗传的特性，其有效种群大小仅为核基因组的四分之一，因此易受
遗传漂变的影响，进化速度较快，其进化速度一般是单倍体核基因的 5～10 倍[13]。但其原
始构建种群的大小对后代种群核苷酸多样性有很大影响。由以上结果可以看出，野鲫的
核苷酸多样性明显高于其他品系，银鲫核苷酸多样性高于彭泽鲫，是因为所用彭泽鲫是经
过选育，显然其原始构建种群较小。据调查表明，由于生态环境的破坏，野生彭泽鲫种群
已很难找到（江西水产所，内部资料）。缩骨鲫由于样本较少，其核苷酸多样性统计值有
一定误差，但其属于野鲫的一个变异品系这一结论仍是可信的，因为这 4 个缩骨鲫个体的
所有鉴别性限制位点均不同于野鲫而不同于银鲫和彭泽鲫。我们所得的野鲫和银鲫核苷酸
和 Chum Salmon（0.003～0.0044）的结果相近。

致谢 江西省水产研究所熊晓钧、吴宣胜先生提供彭泽鲫样本，李长春先生帮助采集缩骨
鲫，在此表示衷心的感谢。

参考文献
1 单世新，蒋一楠．银鲫染色体组型的研究．水生生物学报，1988，12（4）：381～384
2 周嘉申等．黑龙江方正银鲫雌雄发育的细胞学初步探讨．动物学报，1983，29（1）：11～16
3 俞霄华等．广东雌核发育鲫鱼的生物学及养殖实验的初步研究．水生生物学报，1987，11（3）：277～278
4 Avise J C et al. Poecilia mexicana is the recent female parent of the unisexual fish P. formosa. Evolution, 1991, 45（6）：1530～1533
5 Ovenden J R et al. Evolutionary relationships of Gadopsis spp. inferred from restriction enzyme analysis of their mitochondrial DNA. J. Fish Biol., 1988, 32: 137～148
6 Quattro J M et al. Mode of origin and sources of genotypic diversity in triploid gynogenetic fish clones (Poeciliopsis: Poeciliidae). Genetics, 1992, 130: 621～628
7 Sayoum S, Kornfield, Identification of the subspecies of Oreochromis niloticus (Pisces: Cichlididae) using

Comparative Studies of the mtDNA from Three Strains of Triploid Carassius auratus and C. auratus auratus

ZHANG Hui DONG Xin-hong YE Yu-zhen WU Qing-jiang
(Institute of Hydrobiology the Chinese Academy of Sciences Wuhan 430072)

Abstract

The mtDNA from three strains of triploid Carassius auratus: C. auratus gibelio (3N = 156～162), C. auratus pengze var. (3N = 162), C. auratus sogu var. (3N = 150) and C. auratus auratus (2N = 100) were studied by 16 restriction endonucleases. mtDNA RFLPs were produced inter—or intrastrains for 6 enzymes. Four haplotypes were found in C. auratus gibelio, 2 in C. auratus pengze var., 3 in C. auratus auratus and 1 in C. auratus sogu var. C. auratus gibelio and C. auratus pengze var. with the same common haplotype. The haplotype of C. auratus sogu var. is the common haplotype in C. auratus auratus. By data of restriction sites variant, the similarity and nucleotide diversity among haplotypes, nucleotide diversity of intrastrain and genetic distance among strains were calculated. It is determined that C. auratus pengze var. is a local population of C. auratus gibelio and C. auratus sogu var. is a variant strain of C. auratus auratus. The scientific name of C. auratus pengze var. should be C. auratus gibelio pengze var. Using the nucleotide divergence data between the two subspecies, the divergence time of C. auratus auratus and C. auratus gibelio is estimated to be at least 1.13 × 10^5 years.

Key words Carassius auratus, mtDNA, Stock identification

Received October 22, 1996, revision received August 7, 1997